Rotating atom interferometer for onboard quantum inertial sensing

Q. d'Armagnac de Castanet¹, V. Jarlaud^{1,2}, C. Des Cognets¹, V. Ménoret^{1,2}, B. Desruelle², P. Bouyer² & B. Battelier¹

¹Laboratoire Photonique, Numérique et Nanosciences (LP2N), Univ. Bordeaux - CNRS - IOGS, Talence, France

²Exail Quantum Systems, Institut d'Optique d'Aquitaine, Talence, France

The Joint Laboratory **iXAtom** brings together the expertise of **Exail** and the **LP2N** to build a new generation of onboard, high-end inertial sensors for geophysics and navigation, through the hybridization of classical accelerometers and gyroscopes with quantum inertial sensors based on matter-wave interferometry.

WHAT ARE THE REQUIREMENTS FOR AN ONBOARD INSTRUMENT WORKING IN NOISY ENVIRONMENTS?

A compact, 3-axis sensor head...

- Robust and agile laser source (telecom-band fibered setup, IQ modulator) patented [1]
- □ Classical accelerometers and gyroscopes

....Working under vibrations...

...For improved quasi-static performances [3]

 10^{-4} 310 $\overline{10}$ $\overline{10$

AND WHAT ABOUT ROTATIONS?

Two dramatic effects on the atomic interferences:

- Real-time correction of the Doppler frequency shift and vibrations phase noise – patented [2]
 - Real-time cancellation of the classical bias
- High dynamic range, bias-free, continuous measurement of the acceleration components
- □ Short-term sensitivity $\sigma_a \approx 22 \ \mu g @ 1 \ s$

□ Trueness (norm)

Bandwidth

□ Long-term stability $\sigma_a \approx 60 \text{ ng} @ 24 \text{ h}$

BW > 100 Hz

 $|\overline{a} - g| \approx 700 \text{ ng}$

 ✓ 50-fold improvement on the norm of the acceleration vector

A relative displacement of the atomic wave packets in position and momentum

- Problem: fringe pattern in the density profile at each output port
- For averaging detection systems (photodiodes): overall contrast loss $C(\Omega) \approx C_0 \exp\left[-\left(k_{eff}\sigma_v\right)^2 \Omega^2 T^4\right]$
- □ Solution: real-time stabilization of the □ effective wave vector's orientation
- Mirror's rotation opposed to that of the chamber (inertial pointing) patented
- Outcome: recovery of the atomic interference pattern's full amplitude
- ✓ Stable value over the measured range $|\Omega| \le 250 \text{ mrad/s} \approx 14 ^{\circ}/\text{s}$
- Compatible with navigation applications

A more complex atomic trajectory in the mirror's rotating frame

- Problem: rotation-induced acceleration terms scrambling the atomic phase
- No information can be retrieved at the output of the atom interferometer

• $\overline{\Theta} = 28.5^{\circ}$

50 100

150

Yielding a robust quantum inertial sensor operable at any arbitrary orientation and rotation rate [4]

□ Wide operating range recovered $|\Omega| \le 14^{\circ}/s$; $\theta \in [0,30]^{\circ}$

- □ Signal-to-noise ratio at T = 10 ms $SNR = C(\Omega)/\sigma_{\phi} = 5.4$
- Corresponding accel. sensitivity

the new equation of motion $a(t) = \ddot{r}(t)$ $+2[\Omega(t) \times \dot{r}(t)]$ $+\Omega(t) \times [\Omega(t) \times r(t)]$ $+\dot{\Omega}(t) \times r(t)$

Rotation rate Ω (mrad/s)

□ Solution: determination of

-150 -100 -50 0

- Correction of the additional rotation-induced phase shift
- ✓ Improved dynamic, compatible with navigation requirements
- Uncompensated performances
 limited by the contrast decay
- Compensated performances
 limited by the vibrations regime

References

- [1] Templier, S. et al. "Carrier-Suppressed Multiple-Single-Sideband Laser Source for Atom Cooling and Interferometry", Phys. Rev. Applied **16**, 044018 (2021)
- [2] Cheiney, P. et al. "Navigation-Compatible Hybrid Quantum Accelerometer Using a Kalman Filter", Phys. Rev. Applied **10**, 034030 (2018) [3] Templier, S. et al. "Tracking the vector acceleration with a hybrid quantum accelerometer triad", Science Advances **8**.45, eadd3854 (2022)
- [4] d'Armagnac de Castanet, Q. et al. "Atom interferometry at arbitrary orientations and rotation rates", arXiv:2402.18988 (2024)

0.6

Ratio N₂/N_{tot} 0 5

0.4

0.3